Energy Insight Newsletter

Subscribe to our free monthly newsletter featuring renewable energy news, job postings, business profiles, conferences, and more. You may unsubscribe at any time.

Could 135,000 Laptops Help Solve the Energy Challenge?

Cray XT Jaguar supercomputer
The Cray XT Jaguar with more than 224,000 processing cores, each with 2 gigabytes of local memory.
(cc) U.S. Department of Energy, Oak Ridge National Laboratory

U.S Energy Secretary Steven Chu has announced the largest ever awards of the Department’s supercomputing time to 57 innovative research projects – using computer simulations to perform virtual experiments that in most cases would be impossible or impractical in the natural world. Utilizing two world-leading supercomputers with a computational capacity roughly equal to 135,000 quad-core laptops, the research could, for example, help speed the development of more efficient solar cells, improvements in biofuel production, or more effective medications to help slow the progression of Parkinson’s disease.

“The Department of Energy’s supercomputers provide an enormous competitive advantage for the United States,” said Secretary Chu. “This is a great example of how investments in innovation can help lead the way to new industries, new jobs, and new opportunities for America to succeed in the global marketplace.”

The projects include both academic and commercial research, including partnerships with companies such as GE and Boeing to use sophisticated computer modeling in the development of better wind turbines and jet engines.

Specifically, the Department is awarding time on two of the world’s fastest and most powerful supercomputers — the Cray XT5 (“Jaguar”) at Oak Ridge National Laboratory and the IBM Blue Gene/P (“Intrepid”) at Argonne National Laboratory. Jaguar’s computational capacity is roughly equivalent to 109,000 laptops all working together to solve the same problem. Intrepid is roughly equivalent to 26,000 laptops.

The awards include nearly 1.7 billion processor hours on the Department of Energy’s advanced supercomputers – the largest total ever – reflecting both the growing sophistication of the field of computer modeling and simulation and the rapid expansion of supercomputing capabilities at DOE National Laboratories in recent years.

Awarded under the Department’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, many of the new and continuing INCITE projects aim to further renewable energy solutions and understand of the environmental impacts of energy use. The program, open to all scientists, is supported by the Department’s Office of Science and managed by the DOE Leadership Computing Facilities at the Department’s Argonne and Oak Ridge National Laboratories, which host some of the world’s fastest supercomputers.

INCITE program goals include:

  • Illuminating the roles of ocean, atmosphere, land, and ice in climate change
  • Advancing materials for lithium air batteries, solar cells, and superconductors
  • Understanding how turbulence affects the efficiency of aircraft and other transportation systems
  • Designing next-generation nuclear reactors and fuels and extending the life of aging reactors
  • Developing fusion energy systems
  • Improving combustion in fuel-efficient, near-zero-emissions systems
  • Exploring carbon sequestration

Projects were selected on a competitive, peer review basis and evaluated for computational readiness. Selected projects were chosen for their potential to advance scientific discoveries, speed technological innovations, and strengthen industrial competitiveness, and for their ability to make use of hundreds of thousands of processors to work in concert to do so. More than half of the projects are led by university researchers, with the remainder of the awards going to government and industry scientists and engineers.

Read Fundamentals of Renewable Energy Processes from Amazon.

Jobs from Indeed